Rhizobium meliloti genes involved in sulfate activation: the two copies of nodPQ and a new locus, saa.
نویسندگان
چکیده
The nitrogen-fixing symbiont Rhizobium meliloti establishes nodules on leguminous host plants. Nodulation (nod) genes used for this process are located in a cluster on the pSym-a megaplasmid of R. meliloti. These genes include nodP and nodQ (here termed nodPQ), which encode ATP sulfurylase and APS kinase, enzymes that catalyze the conversion of ATP and SO(4)2- into the activated sulfate form 3'-phosphoadenosine 5'-phosphosulfate (PAPS), an intermediate in cysteine synthesis. In Rhizobium, PAPS is also a precursor for sulfated and N-acylated oligosaccharide Nod-factor signals that cause symbiotic responses on specific host plants such as alfalfa. We previously found a highly conserved second copy of nodPQ in R. meliloti. We report here the mapping and cloning of this second copy, and its location on the second megaplasmid, pSym-b. The function of nodP2Q2 is equivalent to that of nodP1Q1 in complementation tests of R. meliloti and Escherichia coli mutants in ATP sulfurylase and adenosine 5'-phosphosulfate (APS) kinase. Mutations in nodP2Q2 do not have as severe an effect on symbiosis or plant host range as do those in nodP1Q1, however, possibly reflecting differences in expression and/or channeling of metabolites to specific enzymes involved in sulfate transfer. Strains mutated or deleted for both copies of nodQ are severely defective in symbiotic phenotypes, but remain prototrophic. This suggests the existence in R. meliloti of a third locus for ATP sulfurylase and APS kinase activities. We have found a new locus saa (sulfur amino acid), which may also encode these activities.
منابع مشابه
Rhizobium tropici nodulation factor sulfation is limited by the quantity of activated form of sulfate.
Rhizobium tropici is a broad host-range symbiont of Phaseolus vulgaris. This bacterium produces a mixture of sulfated and non-sulfated N-methylated pentameric nodulation (Nod) factors. To understand the genetic bases of the partial sulfation of R. tropici Nod factors, which might be involved in the broad host-range of this species, we introduced in R. tropici CFN299 the recombinant plasmid pGMI...
متن کاملA Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation.
The Rhizobium-legume symbiosis involves the formation of a novel plant organ, the nodule, in which intracellular bacteria reduce molecular dinitrogen in exchange for plant photosynthates. Nodule development requires a bacterial signal referred to as Nod factor, which in Sinorhizobium meliloti is a beta-(1,4)-linked tetramer of N-acetylglucosamine containing N-acyl and O-acetyl modifications at ...
متن کاملIdentification of a third sulfate activation system in Sinorhizobium sp. strain BR816: the CysDN sulfate activation complex.
Sinorhizobium sp. strain BR816 possesses two nodPQ copies, providing activated sulfate (3'-phosphoadenosine-5'-phosphosulfate [PAPS]) needed for the biosynthesis of sulfated Nod factors. It was previously shown that the Nod factors synthesized by a nodPQ double mutant are not structurally different from those of the wild-type strain. In this study, we describe the characterization of a third su...
متن کاملReduction of adenosine-5'-phosphosulfate instead of 3'-phosphoadenosine-5'-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae.
We have cloned and sequenced three genes from Rhizobium meliloti (Sinorhizobium meliloti) that are involved in sulfate activation for cysteine biosynthesis. Two of the genes display homology to the Escherichia coli cysDN genes, which code for an ATP sulfurylase (EC 2.7.7.4). The third gene has homology to the E. coli cysH gene, a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase (EC 1.8.99...
متن کاملRhizobium meliloti nodD genes mediate host-specific activation of nodABC.
To differentiate among the roles of the three nodD genes of Rhizobium meliloti 1021, we studied the activation of a nodC-lacZ fusion by each of the three nodD genes in response to root exudates from several R. meliloti host plants and in response to the flavone luteolin. We found (i) that the nodD1 and nodD2 products (NodD1 and NodD2) responded differently to root exudates from a variety of hos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 132 4 شماره
صفحات -
تاریخ انتشار 1992